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Preface

Computational requirements on information processing systems are nowadays
enormous - not only huge amounts of data needs to be processed and classified
but also the systems need to deal with massive data usually in the form of data
streams and frequently real-time processing requirements. On the other hand,
neural systems proved their great potential, especially in pattern recognition and
computer vision. However, all of the above rely heavily on e�cient algorithms
and continuously improved implementations. Therefore computational aspects
become a key issue in pattern recognition and computer vision.

The aim of this workshop to collect researchers and practitioners to share
interesting research topics and ideas especially in the area of computational
aspects of pattern recognition and computer vision processed on all types of
neural systems, starting from algorithm design and up to implementations and
applications, encountered in computer vision and pattern recognition computer
vision for information mining, especially form from massive data streams and
new neural architectures. Scope of the workshop includes, but is not limited, to
the following topics:

– Parallel implementations of pattern recognition and computer vision neural
systems;

– Deep learning techniques and new achievements in computer vision with
special stress on image enhancement for pattern recognition;

– Real-time neural systems, their implementation and application;
– Rapid neural system development new directions and platforms;
– Graphic card (gpu) implementations of pattern recognition and computer

vision systems;
– Hardware implementations (fpga) of pattern recognition and computer vi-

sion systems;
– New algorithms for e�cient computations on pattern recognition and com-

puter vision neural systems;
– Tips and tricks in pattern recognition and computer vision algorithms;
– Industrial applications of pattern recognition and computer vision, especially

with dedicated streaming data;
– Computational aspects in all kinds of massive and streaming data;
– Pattern recognition in computer vision, multimedia, and image processing;
– Multilinear and tensor approach to data representation and pattern recog-

nition;
– Active learning for neural based pattern recognition and computer vision;
– Hyperspectral image processing;
– Pattern recognition in hyperspectral images;
– Visualization and sonification for high dimensional data;
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Automated Image Captioning Using Nearest-Neighbors
Approach Driven by Top-Object Detections

Karan Sharma Arun CS Kumar Suchendra M. Bhandarkar
Department of Computer Science, The University of Georgia

Athens, Georgia 30602–7404, USA
{karan@uga.edu, aruncs@uga.edu, suchi@cs.uga.edu}

Abstract. The significant performance gains in deep learning coupled with the
exponential growth of image and video data on the Internet have resulted in the
recent emergence of automated image captioning systems. Two broad paradigms
have emerged in automated image captioning, i.e., generative model-based ap-
proaches and retrieval-based approaches. Although generative model-based ap-
proaches that use the recurrent neural network (RNN) and long short-term mem-
ory (LSTM) have seen tremendous success in recent years, there are situations in
automated image captioning for which generative model-based approaches may
not be suitable and retrieval-based approaches may be more appropriate. How-
ever, retrieval-based approaches are known to suffer from a computational bot-
tleneck with increasing size of the image/video database. With an aim to address
the computational bottleneck and speed up the retrieval process, we propose an
automated image captioning scheme that is driven by top-object detections. We
surmise that by detecting the top objects in an image, we can prune the search
space significantly and thereby greatly reduce the time for caption retrieval. Our
experimental results show that the time for image caption retrieval can be reduced
without suffering any loss in accuracy.

Keywords: Automated image captioning, top-object detection, image retrieval,
k-nearest-neighbor search

1 Introduction

Automated image captioning, i.e., the problem of describing in words the situation cap-
tured in an image, is known to be challenging for several reasons. The recent significant
performance gains in deep learning coupled with the exponential growth of image and
video data on the Internet have resulted in the emergence of automated image cap-
tioning systems. Two broad paradigms have emerged in the field of automated image
captioning, i.e., generative model-based approaches [3], [5], [9], [11], [17] and retrieval-
based approaches [1]. Although generative model-based approaches that use the recur-
rent neural network (RNN) and long short-term memory (LSTM) have seen tremendous
success in recent years, there are situations for which retrieval-based approaches may
be better suited. Examples of such situations include:

(1) Situations wherein the training sets are dynamically changing. To keep up with
the increasing pace of visual data being constantly uploaded on the Internet, computer



vision practitioners face a challenging task of training models that are capable of adapt-
ing to constantly changing datasets or reducing the size of the datasets. By reducing the
size of the datasets, one runs the risk of discarding useful data resulting in the learning
of simplistic models. Adaptive models have the added overhead of requiring constant
training or retraining as the underlying datasets change over time. Moreover, adaptive
models need to deal with the problem of concept drift, i.e., situations where the statis-
tical properties of the target variable or concept, which the model is trying to predict,
change over time in unforeseen ways, especially when the new data being uploaded
is significantly different from previously observed data. In contrast, retrieval-based ap-
proaches, modeled on nearest-neighbor search, do not entail the overhead of constant
retraining of models since one can store all the images in the dynamically changing
dataset in a database.

(2) Situations wherein one needs to deploy an automated image captioning system
with the goal of simultaneously reducing system development time and CPU execu-
tion time. Nearest-neighbor approaches lend themselves easily to rapid implementa-
tion and deployment since they have very few tunable hyperparameters compared to
other approaches. Hence retrieval-based approaches based on nearest-neighbor search
are naturally preferred in rapid prototyping situations. However, the potential downside
of retrieval-based approaches is that nearest-neighbor search can be exhaustive if one
has to perform all possible comparisons between the query image and the database en-
tries. Traditionally, techniques such as locality sensitive hashing (LSH) have been used
to speed up nearest-neighbor search. However, effective use of LSH requires the proper
tuning of several hyperparameters in order to achieve accurate results. In contrast, the
proposed approach has very few tunable hyperparameters and hence a much less com-
putationally intensive hyperparameter tuning phase.

Although retrieval-based approaches to automated image captioning have not been
as successful as generative model-based approaches, the performance of retrieval-based
approaches has been observed to be not very far behind that of RNN- and LSTM-based
approaches when addressing the Microsoft Common Objects in Context (MS COCO)
challenge. Therefore the obvious question arises - in situations (such as the ones de-
scribed previously) where retrieval-based approaches are called for, how does one speed
up the nearest-neighbor search procedure? To this end, we propose a variant of the
nearest-neighbor search procedure to speed up image caption retrieval using top-object
detections. Specifically, we use the detection of the most significant objects in an image
(i.e., the top objects) to speed up the k-nearest-neighbor (k-NN) search for retrieval-
based automated image captioning. Although, as noted previously, approaches such as
LSH can used to accelerate the retrieval process, LSH entails a hyperparameter tuning
procedure that is computationally complex and difficult to implement thereby calling
for a significant expenditure of programmers’ development time.

2 Related Work

Automated image captioning: Automated image captioning systems have grown in
prominence owing, in large part, to the tremendous performance gains shown by deep
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Fig. 1. Top-object detections used to drive k-NN search.

learning in recent times. Existing automated image captioning systems can be cate-
gorized as either generative model-based or retrieval-based. Generative model-based
systems involve correctly identifying objects, verbs, adjectives, prepositions or visual
phrases in an image and generating a caption from these or directly from the repre-
sentation of the image [3], [5], [9], [11], [17]. Retrieval-based approaches [1], on the
other hand, involve retrieving the most suitable caption from a database of captions
and assigning it to an image. Currently, generative model-based approaches that use
the RNN and LSTM have been shown to yield the best performance metrics in the
context of automated image captioning; however retrieval-based approaches have also
proved to be quite competitive in terms of performance. The generative model-based
and retrieval-based paradigms are each suited for different kinds of situations and ap-
plications. However, in situations where retrieval-based approaches are more appropri-
ate and successful, we propose a scheme to optimize and speed up the caption retrieval
process by exploiting the top-object detections in the image.

3 Motivation

Although generative model-based approaches that use the RNN and LSTM are regarded
as the state-of-the-art in automated image captioning, there are potential situations for
which they may not be well suited and hence retrieval based captioning approaches
may be called for. However, retrieval-based approaches to automated image captioning
can be computationally intensive and slow especially when a query image is compared
with all the images stored in the database. However, before we proceed to address the
question of how to speed up retrieval-based approaches to automated image captioning,

Automated Image Captioning Using Nearest-Neighbors Approach. . . 3



we digress to answer an important related question, i.e., under what potential situations
would retrieval-based approaches have an advantage over state-of-the-art generative
model-based approaches that use the RNN and LSTM in the context of automated im-
age captioning?
Concept Drift: Consider the problem of automated image captioning in situations
where the underlying datasets are dynamically changing such as when visual data (in
the form of images and videos) is being uploaded over the Internet at an extraordinary
pace, both on popular online social media (OSM) platforms such as Facebook, Insta-
gram, Snapchat, Google and Twitter, and on websites that contain more structured and
specific information such as those dealing with news, sports, art, and technology. Many
of the uploaded images and videos have some sort of textual information associated
with them, typically in the form of tags, captions, and/or comments. Mining such a
large data set is tremendously challenging for most computer vision practitioners. The
constant pace of the dynamically changing dataset makes it incredibly difficult to learn
reliable computer vision models. The standard assumption underlying most machine
learning techniques is that the training data will be similar to the testing or querying
data. However, in dynamic situations where the underlying data is continuously chang-
ing, it is especially hard to train reliable models. In this paper, we propose a retrieval-
based model for automated image captioning for situations wherein the training datasets
are very volatile and constantly changing.

One of the problems faced when dealing with dynamic datasets is the problem of
concept drift where the function learned by a machine learning model is rendered not
particularly useful for newly arriving data. For example, near Christmas, people tend to
post more pictures or images of their activities around a Christmas-oriented theme on
OSM sites. An existing machine learning model may not be in situation to automatically
label or caption these images since it has not seen these images previously. One solution
is to constantly retrain the existing model as the new data arrives or use models that are
capable of adapting to new data. However, the constant retraining of models could pose
significant and, in some cases, an impossibly high computational demand, especially
in situations where images are being uploaded at a very rapid pace. Moreover, many
adaptive models, in the interest of computational efficiency, subsample the data during
retraining. The discarding of data could lead to the learning of overly simplistic models.
The interested reader is referred to the work of Gama et al. [7] for a more detailed and
comprehensive treatment of the concept drift problem.

For the reasons mentioned above, some of the most popular automated image cap-
tioning schemes, based on generative models that use the RNN and LSTM, are seriously
disadvantaged in situations where a large proportion of the training data is in a state of
constant flux. In such instances, the generative models will learn a classification or pre-
diction function that could account for most cases, but may miss cases that occur only
a few times. Moreover, the cases that occur infrequently may contain valuable infor-
mation. For example, if the training set has millions of images, and only five instances
of Man is biting a dog, the generative model may simply ignore this infrequent case
during the training process, although the case may be of potential interest. Hence, for
this reason and reasons described in previous paragraph, generative models are not well
suited for image captioning under dynamically changing training datasets. However,

4 Sharma, Kumar and Bhandarkar



retrieval-based approaches, such as ones based on k-NN search do not suffer from such
problems. It has been convincingly shown by Hays and Efros [8] that k-NN search is
one of the most effective retrieval algorithms if one has a very large dataset. However,
exhaustive k-NN search could be computationally very expensive. Although techniques
such as LSH have been traditionally used to speed up k-NN search-based image re-
trieval [4], the hyperparameter tuning procedure needed to optimize the performance of
LSH is non-trivial in terms of its computational complexity [4]. The situation is further
complicated if we need to retune the LSH procedure in the face of constantly arriving
new training data. Thus, retrieval-based automated image captioning techniques suffer
from the same disadvantages as their generative model-based counterparts if the former
use k-NN search optimized via LSH. In this paper, we propose a simple retrieval-based
technique for automatic image captioning that is accurate, reliable and computationally
efficient. The proposed technique is based on enhancing the k-NN search by exploiting
the top-object detections in an image.
Rapid Prototyping: We use top-object detections to speed up the caption retrieval pro-
cedure during automated image captioning. Specifically, we use the detection of the
most significant objects in an image (i.e., the top objects) to speed up the k-NN search
for retrieval-based automated image captioning. We show top-object detection to be a
preferable alternative to the more conventional retrieval-based automated image cap-
tioning methods that employ LSH to speed up the k-NN search. It is to be noted that
although techniques such as LSH can be used to speed up k-NN search-based image
retrieval, the hyperparameter tuning procedure needed to optimize the performance of
LSH is non-trivial in terms of computational complexity [4], especially in the case of
complex applications such as automated image captioning. Thus, complete automation
of the LSH procedure for automated image captioning is a challenging task. Imple-
mentation and proper tuning of LSH also presents a significant expenditure of system
development time, which is an important consideration in real-world situations where
rapid prototyping is called for.

4 k-NN Search Driven by Top-Object Detections

Previously, Devlin et al. [1] have obtained good results for automated image caption-
ing based on k-NN search-based image retrieval. Their approach determines the k-NN
images by computing a measure of image similarity between the test/query image and
each of the database images. The test/query image is then assigned the caption ob-
tained by computing the consensus of the retrieved k-NN image captions. Performing
an exhaustive search of the image database to retrieve the k-NN images using an im-
age feature-based similarity metric is clearly not a scalable approach. We show that,
in the context of automated image captioning, by detecting all objects in a test image,
selecting the top-n objects (where n is a small number) and retrieving all images that
contain at least one of these n objects, one can achieve results comparable to those
of k-NN retrieval via exhaustive search while simultaneously obtaining a significant
speedup. Fig. 2 summarizes the proposed approach. We demonstrate our approach on
the MS COCO dataset as a proof of concept. We believe the experimental results on the
MS COCO dataset are transferable and generalizable to real-world dynamic datasets.

Automated Image Captioning Using Nearest-Neighbors Approach. . . 5



Although the proposed approach involves tuning the parameters of a support vector
machine (SVM)-based classifier for object detection/recognition, it is computationally
much less expensive than the LSH hyperparameter tuning procedure used to optimize
k-NN search and also yields readily to automation.

Although running various object (i.e., noun) detectors on the test/query image im-
poses a computational overhead, it is offset by the following considerations: (a) the
space of objects (i.e., nouns) is bounded. Also, since objects are concrete entities, gen-
erating training sets for object detectors is not very difficult if one uses web-based data
coupled with crowdsourcing, (b) sliding windows are not used during the object detec-
tion procedure, i.e., the entire test/query image is fed as input to the SVM-based object
detector. The computational overhead of object detection in the test/query image is also
offset by: (a) the resulting speedup over k-NN image retrieval via exhaustive search
and, (b) savings in development time compared to the scenario wherein k-NN image
retrieval is optimized using LSH. Additionally, the proposed approach also results in
significant savings in CPU execution time as shown in Table 1.
Complexity Analysis: Given a set of objects X = {x

1

, x
2

, . . . , xn}, and a set of im-
ages I = {I

1

, I
2

, . . . , Im}, we make the following assumption regarding the dataset:
Each object xi does not occur in more than k images in the dataset where k ⌧ m.
In real world datasets, especially in large datasets, it is expected that no single object
category will dominate the images in the dataset. Even generic categories such as per-
son, car, . . . , would be expected to occur in a significantly small percentage of the total
number of images in the dataset. Also, for a small subset Y ⇢ X where no member of
Y occurs in more than r images (r ⌧ m) in the dataset, the number of comparisons
is bounded by r · |Y | resulting in a O(r · |Y |) time complexity. However, what if r
is a large number? We argue that in datasets that are sufficiently representative of real
world, this will not be the case. For example, consider an image whose top detections
are person, dog, road, and building. Intuitively, in a large dataset representative of many
nouns and concepts in the world, we can expect that all the images that contain at least
one entity from the set { person, dog, road, building} are far fewer than all the images
in the dataset thus resulting in an order of magnitude reduction in search complexity.
Retraining Event Analysis: Assume an image dataset (with associated captions for
each image) of size N (i.e., N is the number of data points). Assume this dataset is being
constantly augmented with new incoming image data (and the associated captions).
Assume that after every w data points (i.e., images) are added to the dataset, there is a
concept drift, that requires retraining of the model. In a traditional generative model-
based system that uses an RNN, retraining will be needed in two situations after the
addition of new data points to the existing dataset:
(a) Changes in concepts, where a concept is any word, which includes nouns, verbs,
adjectives and so on. Assume that the concepts change at an average rate of c concepts
after w new data points are introduced. Clearly, the space of concepts is far greater than
the space of objects (i.e., nouns). Let tr(c) denote the average number of training events
required to account for the concept changes after a collection of w new data points is
added to the existing dataset.
(b) Changes in concept dependencies. The dependency between two words is a measure
of how much a given word depends on the other word. For example, the word eating
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is dependent on the words person and food. We need to retrain the model to learn such
dependencies after a collection of w new data points is introduced. Assume that the con-
cept dependencies change an average rate of d concept dependencies upon introduction
of a collection of w new data points. Again, based on our understanding of the real
world, the space of these dependencies is significantly larger than the space of objects
alone. Let tr(d) denote the average number of training events required to account for
the changes in concept dependencies after a collection of w new data points is added to
the existing dataset.

In contrast to a traditional generative model-based system, in the proposed ap-
proach, the training events will be required only when new objects are introduced at
an average rate of ob objects after w new data points are added to the existing dataset.
Clearly, the training events are bounded by the number of objects under consideration.
Let tr(ob) denote the average number of training events required after w new data
points are added to the existing dataset. Based on our knowledge of the real world and
the above arguments, the training events in the proposed approach will be significantly
fewer than the training events in a traditional generative model-based system (such as
one that uses an RNN), i.e., tr(ob) ⌧ tr(c) + tr(d).

5 Experimental Results

Training: For the purpose of training, we use 80 annotated object categories in the MS
COCO dataset [10]. Binary SVM classifiers are trained for each of these 80 annotated
categories using VGG-16 fc-7 image features [13], and the SVMs are calibrated using
Platt scaling. For the extraction of fc-7 features, Matconvnet package [15] is employed.

In addition, we store each training image in the MS COCO dataset and its accom-
panying sentences (5 sentences per image) in our database. We treat these sentences as
ground truth captions for the corresponding training image. For testing purposes, we
consider the MS COCO validation set consisting of close to 40,000 images.
Testing: For each test image in the MS COCO validation set, we run all the 80 object
detectors on the test image. We select the top-n objects from all the detected objects
in the image. In our current implementation n = 5. The detected top objects are the
ones that are deemed to possess the highest probability of occurrence in the image.
The probability of occurrence of an object in the image is computed by mapping the
classification confidence value generated by the SVM classifier for that object to a cor-
responding probability value using Platt scaling [12]. From the training dataset, we
retrieve all images that contain at least one of the top-n objects detected in the previous
step, using the corresponding ground truth captions, i.e., a training image is retrieved if
at least one of its associated ground truth captions contains a noun describing the object
under consideration. In addition, for the purposes of retrieval, all the synonyms for cer-
tain words such as person (synonyms are man, woman, boy, girl, people, etc.) are taken
into consideration. Using the cosine distance between the fc-7 features of each retrieved
image and the test image, we select the k-NN images for further processing.

In the current implementation we have chosen k = 90 as recommended by [1].
Since each of the k-NN images has 5 associated sentences (captions), we have a total of
5k potential captions for the test image. We determine the centroid of the 5k potential

Automated Image Captioning Using Nearest-Neighbors Approach. . . 7



captions and deem it to represent the consensus caption for the test image. The con-
sensus caption is then assigned to the test image in a manner similar to [1]. The BLEU
measure is used to evaluate the similarity (or distance) between individual captions and
to determine the centroid of the 5k potential captions. We have also implemented image
retrieval using exhaustive k-NN search [1] and compared the CPU execution time of the
proposed approach with that of image retrieval using exhaustive k-NN search for 2000
random images .
Results: As shown in Table 1, the proposed image retrieval, using k-NN search driven
by top-object detections, and the standard image retrieval, that employs exhaustive k-
NN search, yield very similar results when the BLEU and CIDEr [16] similarity metrics
are used to compare the retrieved captions.

Table 1. Comparison of image captioning results obtained using the proposed approach for image
retrieval based on k-NN search driven by top-object detections (Obj-k-NN) and those obtained
using conventional image retrieval based on exhaustive k-NN search (Exh-k-NN).

BLEU1 BLEU2 BLEU3 BLEU4 CIDEr CPU time
Exh-k-NN 65.6% 47.4% 34% 24.7% 0.70% 2.5e+04s
Obj-k-NN 64.6% 46.2% 32.8% 23.6% 0.68% 1.17e+04s

Fig. 2. Qualitative Results for nearest neighbor driven by top-object detections. Some captions
retrieved accurately describe the image while others are partially correct.

The proposed approach is seen to yield significant gains in CPU execution time
when compared to image retrieval using exhaustive k-NN search. Essentially, the pro-
posed image retrieval technique based on k-NN search driven by top-object detections
is observed to provide an attractive alternative to LSH for the purpose of speeding up
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k-NN search-based image retrieval in the context of automated image captioning. As a
proof of concept, the results of the proposed image retrieval technique based on k-NN
search driven by top-object detections on the MS COCO dataset are fairly convincing.
We believe that these results could be directly transferred to real-world datasets that are
dynamically changing.

These results show that k-NN search driven by top-object detections, even though
simple in concept, can provide significant gains in critical situations where the datasets
are dynamically changing. This approach requires that we store all the training im-
ages along with their associated captions in the database. When dealing with real-world
problems, we will store all the image instances in the database and retrieve the relevant
images from the database using top-object driven k-NN search. There are three advan-
tages to the proposed approach: We do not need to subsample the dataset by discarding
any potentially useful information, we do not need to exhaustively search for the k-
NN images, and we do not need to retrain the retrieval models in the face of changing
information.

6 Conclusions

We have shown that retrieval-based approaches for automated image captioning could
be made computationally more efficient if they are driven by top-object detections. The
potential advantages of our approach are in situations where the underlying datasets are
changing dynamically. In addition, the proposed approach needs much less parameter
tuning when compared to the computationally intensive hyperparameter tuning associ-
ated with traditional LSH-based optimization of k-NN search. The proposed approach
is a natural candidate for use in rapid prototyping conditions that also call for optimiza-
tion of CPU time.

Acknowledgment The authors wish to thank Devi Parikh for her invaluable sug-
gestions during this research.
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Abstract. In recent years, Deep Learning (DL) showed new top per-
formances in almost all computer vision tasks that are important for
automotive and robotic applications. In these applications both space
and power are limited resources. Therefore, there is a need to apply
DL approaches on a small and power e�cient device, like the NVIDIA
Jetson TX1 with a powerful GPU onboard. In this paper, we analyze
the Jetson’s suitability by benchmarking the run-time of DL operations
in comparison to a high performance GPU. Exemplary, we port a top-
performing DL-based person detector to this platform. We explain the
steps necessary to significantly speed up this approach on the device.

1 Introduction

In recent years, Deep Learning approaches have surpassed the performance of
traditional computer vision methods by far for almost all image processing tasks
that are essential for autonomous cars and mobile service robots. Examples are
object recognition [27], scene understanding [8], person detection [6], and many
more. All these DL approaches need extensive computational resources. Thus,
usually they are processed on high performance GPUs. For neural network train-
ing, indeed, much computation power is indispensable to get the task done in a
reasonable amount of time. Once trained, the deep networks can be applied on
less powerful systems, but still need an adequate GPU to be fast.

Mobile robots have very tight power restrictions to guarantee an appropriate
service accessibility time. Thus, high performance GPUs are typically unsuitable,
since they are known for their high power consumption. Similar restrictions apply
to the size and weight of components for autonomous cars, in order to increase the
passenger compartment and carrying capacity as well as the car’s fuel-e�ciency.
Bulky high performance PCs with powerful GPUs contradict this principle.

Luckily, in 2015 NVIDIA presented the Jetson TX1, an embedded system
of the size of a credit card with a GPU onboard, that consumes less then ten

? This work has received funding from the German Federal Ministry of Education
and Research as part of the SYMPARTNER project under grant agreement no.
16SV7218.



CPU 4-core ARM Cortex-A57 @ 1.9GHz
GPU 256-core Maxwell @ 1GHz
RAM 4GB LPDDR4 (shared CPU + GPU)
Processing speed 1024GFLOPS in float16 precision
Communication Gigabit Ethernet, WiFi, Bluetooth, USB
Power consumption < 10W (peak 15W in worst case)
Size 50⇥87mm

Fig. 1. Basic data of NVIDIA Jetson TX1 platform used for Deep Learning.

watts (see Fig. 1). Therefore, this platform is perfectly suited for application
on autonomous cars or mobile robots. For comparison, on our mobile robotic
rehabilitation assistant [11] and our robotic companion for domestic use [13] we
need two PCs with Intel core-i7 CPUs (i7-4770R, 4 Cores @ 3.2GHz) to provide
all the robot’s services simultaneously, which together consume more than 170
watts.

In this paper, we show that computational expensive Deep Neural Network
(DNN) computations can be outsourced to a Jetson TX1 with only very lit-
tle communication overhead. Therefore, we show detailed run-time analyses of
typical DL operations on this platform. Exemplary, we choose person detection
as application, which is a central task for both autonomous cars (pedestrian
recognition [4]) and mobile service robots (being aware of persons for keeping
personal space [38], being polite in navigation [37], following a specific person
[11], or identify the current user [7]).

In [6] we presented a DL-based person detector that surpassed the state of the
art on the standard person detection benchmark dataset Caltech [4]. This neural
net has relatively low memory requirements, which makes it a good candidate
for porting it to the Jetson TX1. We will explain the steps necessary to speed up
this approach on a Jetson TX1. Then we will show its application on a mobile
robot, where it significantly outperforms traditional person detectors and other
DL approaches.

2 Related Work

In recent years, low power consuming embedded devices with onboard GPU
have gained increased attraction in a wide range of research fields. Deep neural
networks heavily benefit from parallelization. Thus, they are perfectly suited for
application on such devices.

2.1 Automotive Applications

The Jetson TX1 is widely spread among autonomous car research projects. It
has been used for navigation tasks [32], sensor fusion and probabilistic tracking
[19], semantic road scene segmentation based on dynamic programming [14], and
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DL-based tra�c sign recognition [25]. In [36] a DL-based semantic image seg-
mentation is implemented on this embedded platform by applying the smaller
SqueezeNet architecture instead of DL nets, that have many weights, to gain
a speedup. The segmentation performance decreases due to the modifications
but is still su�cient for self-driving cars. In [15] a related technique, called
”distillation”, is used for decreasing the size of a network in order to obtain
computational savings.

2.2 Robotic Applications

Embedded platforms like Jetson TK1 and TX1 have been used on mobile robots
for several tasks, such as the rectification of an omnidirectional image [33],
particle-based monte carlo localization [29], SLAM [10], path planning [24], and
speech processing [30]. In [16], sonar images of an underwater robot are classified
by a DL approach on a TX1. They apply a retrained, but structurally unchanged
YOLO detector [27] without further optimization.

In [21] a combination of a less powerful embedded platform on a mobile
robot in combination with a cloud solution is proposed for Deep Learning. The
onboard device processes just shallow neural networks. High accuracy can only
be achieved by sending the computing job to a high performance server. In our
opinion, this is not a feasible solution, since in many real-world environments
WiFi might not be fast and reliable enough for unconstrained robot applications,
as experienced e.g. in medical environments such as rehab clinics [11], in private
apartments of elderly people [13], and in stores [12]. In these cases, the robot
would not be able to provide service tasks that depend on DL-based modules.
But a mobile service robot should be able to fulfill all of its tasks with high
accuracy at any time. Therefore, DL operations should be performed onboard
without the need for a cloud solution.

2.3 Person Detection

Also person detection has been done on a TK1 on a mobile robot. In [31] face
detection is used to locate the user of a telepresence robot. In [2] persons are
detected in 3D point clouds of a Kinect 1. These approaches, however, do not
deploy Deep Learning.

In [1] classical computer vision based person detection approaches are ported
to the Jetson TX1 achieving a huge speedup, up to 20 frames per second (HOG
+ LBP), due to the use of a GPU instead of a CPU. While the speed is very
good, the accuracy is only mediocre.

Deep Learning approaches for person detection have also been ported to
the Jetson TX1. In [40], an AlexNet [18] is retrained to detect skin color as
indication for the presence of persons. This approach is not su�cient to detect
persons robustly.

More often, general object detectors trained on ImageNet are applied. These
include the class ’person’, but are not fine-tuned on this specific task. In [20]
a multi-scale wide residual inception network is applied for object detection on
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the TX1. It can process 16 rescaled frames of size 300⇥300 per second, but the
detection results for the class ’person’ are only mediocre. The YOLO object
detector [27] is portet to the Jetson TK1 in [26]. It does not fit into the memory
of the TK1. Therefore several strategies to reduce the network size are evaluated.
Since fully connected (FC) layers need more than 80% of network’s memory, the
lack of memory could be handled by splitting the FC layers and processing parts
of them sequentially. Other techniques, like decreasing the network size, degraded
the performance. On the Jetson TK1, they processed 4 rescaled frames of size
448⇥448 per second. In [42], the YOLO detector was ported to a Jetson TX1
without modifications. They were able to process 12 frames of size 448⇥448
per second. In [22] the Faster R-CNN [28] approach based on VGG networks
was ported to the Jetson TX1 without modifications. It is reported, that the
detection for 1280⇥720 images ”is near real-time frame rates”.

All these approaches are relatively good general object detectors. However,
for person detection they perform relatively poor (see Sec. 4.3).

2.4 Our Contribution

Summarized, none of these studies has analyzed the run-time of DL operations
on the Jetson TX1 in detail. Only few of these studies have adapted their baseline
DL approach in terms of computational savings for processing on the embedded
platform. Most approaches take the neural nets as they are. In comparison, we
analyze the run-time of DL operations and show, which additional optimizations
speed up the computation without decreasing accuracy. As baseline, we use a
specialized person detector from our previous work [6].

3 Speed up a Deep Learning based Person Detector on
the Jetson TX1

3.1 Baseline Multi-Scale CNN Person Detector

For detecting persons at di↵erent scales, we build on our previous work [6] that
set a new top mark on the most popular Caltech pedestrian detection bench-
mark. It uses a resolution pyramid in combination with three Convolutional
Neural Networks (CNNs). Due to the use of multiple CNNs at di↵erent scales,
the learned features are specific for the respective resolutions the particular
CNNs are applied to, which improves the performance significantly. The net-
work topologies used in the di↵erent stages are similar with the exemplary stage
displayed in Fig. 2. The networks take raw pixels as input and predict whether
the image patch shows a person or not. The networks were designed with a real-
time application and an embedded device in mind. Thus, the largest net (Fig. 2)
has relatively few weights (4M) to fit into the memory of a Jetson TX1, even
when applied to a full-size image. More modern architectures known for their
good performance on ImageNet would not fulfill this requirement. Additionally,
the net is not overly deep and wide to avoid needless computations (see Fig. 2).
In [6], the design choices are described in detail.
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Fig. 2. CNN topology for detecting persons. The neural network consists of five convo-
lutional layers with ReLU activation [23], three max-pooling layers, two fully connected
layers with ReLU activation, and a softmax output layer. Dropout [34] is used for reg-
ularization.

The three CNNs were trained on a large and versatile dataset composed of 22
datasets from pedestrian detection and person re-identification domains. It con-
tains cropped images showing persons (100,107 samples) and 628,636 non-person
samples. The negative class includes random crops from non-person objects, typ-
ical false detections, and (on purpose) badly aligned crops showing only parts
of persons. In this paper, we use the trained weights of [6]. Since the training
dataset is versatile and generic, we do not need to retrain on a scenario specific
dataset.

After the networks were trained, fully connected layers were converted to
convolutional layers to be able to process images of any size without the need
to shift a sliding window to several locations. Fig. 3 shows the processing chain
of the application phase. Each of the CNNs calculates output maps for multiple
scales of the resolution pyramid. When these classifications have been done, the

3 CNNs 
on each 
scale 

Resolution 
pyramid 

Non-maximum 
suppression 
by 3D pooling 

Fig. 3. Baseline approach [6]. Processing chain in the application phase. To create the
resolution pyramid, the input image is scaled such that it is exactly halved in size
after seven scales. Thus, each of the three CNNs has to process seven scales. The near
scale CNN (red box) additionally processes smaller scales to detect larger persons.
Exemplary network outputs are shown. High neural activations (shown in red) suggest
that persons are present in that region of the image. The classification results are
stacked and non-maximum suppression implemented as 3D pooling is applied to find
the best fitting positions and scales for all persons in the scene.
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full output pyramid can be constructed. Then, a 3D non-maximum suppression
(NMS) is applied to find persons in the scene and at the best fitting scale.
For NMS, we implemented an approximation of the mean-shift algorithm as 3D
pooling. For algorithmic details we refer to [6].

For implementation, we used Keras [3] and Theano [35]. The network training
was performed on a single NVIDIA GTX Titan X GPU in float32 precision.

3.2 Performance Analysis

The application phase on a NVIDIA GTX Titan X GPU took 0.231 seconds on
average per image of size 640 ⇥ 480 if persons of a height of at least 80 pixels
should be detected (reported in [6]). Persons, that are partly out of the image
were not considered so far.

Hence, we extended this approach to also detect persons in front of the robot
or pedestrians crossing the street in front of a car, where only the upper body
is visible. This was achieved by zero padding the image below its bottom. The
image size and, thus, also the computation time doubled. We also increased the
maximum distance at which persons are detected. Therefore, the detector now
searches for persons of height 75 – 927 pixels on 26 scales.

When applied on the Jetson TX1, the run-time increased by a factor of 18 to
8.4 seconds. In this paper, we explain how to significantly speedup this DL-based
detection approach by optimizing it for application on the NVIDIA Jetson TX1
without a loss in accuracy.

To figure out, what caused the significant slowdown, we first analyzed the
run-time of DL operations on the Jetson TX1 in comparison to the high perfor-
mance Titan X GPU (see Sec. 4.1). Convolutions, that account for 90% of the
computations, are up to 11 times slower on the Jetson platform. Although, this
explains most of the observed slowdown, the overall slowdown factor is still a
lot higher. Therefore, we searched for additional slowdown factors that should
be eliminated.

3.3 Optimizing the Detector for Processing on a Jetson TX1

Our analyzes have shown, that copy operations between CPU and GPU cre-
ated a large overhead. Although, the Jetson’s CPU and GPU share the same
memory, making copy operations dispensable, the DL frameworks were not able
to make use of this fact. To avoid unnecessary copy operations, we made sure,
that everything is processed on the GPU, including non-DL operations such as
construction of the image pyramid and postprocessing. Then, we optimized the
computation graph in the Theano framework [35] by removing redundancy and
by specifying exact shapes, which means, that all image and succeeding tensor
sizes are set beforehand of processing. We can do this since the camera frame
size will not change. These optimizations, that do not change any results, reduce
the run-time by approximately 66%.

The run-time benchmarks of DL operations (see Fig. 4, Sec. 4.1) confirm,
that float16 precision instead of float32 precision speeds up the computation
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significantly. We therefore checked, if using float16 precision instead of float32
precision changes the results significantly. The only part of the CNN that is
extremely sensitive to a lower floating point precision is the gradient during
backprobagation. During training float16 precision would significantly worsen
the results and, thus, cannot be applied. In the application phase we observed,
that the accuracy of the classifier does not change. None of the linear operations
(Fig. 4 (a) – (c), (e) – (l)) are sensitive to precision. However, the outputs
after the softmax operation loose floating point precision due to the exponential
operation. That means, that non-maximum suppression (NMS) becomes hard,
if not impossible, since positions near the optimal location of a detected person
get equal scores. Therefore, operations after softmax need special treatment. We
used the network’s linear output before the softmax exponential operation for
NMS. Using this trick, we observed only minor di↵erences to the float32 version,
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Fig. 4. Slowdown of typical Deep Learning operations on Jetson TX1 in comparison to
GTX Titan X GPU. Absolute time measured in milliseconds is shown behind each bar.
Times are averaged over 50 runs. (a) – (e) operations on 1000⇥1000 matrices, (f) – (j)
valid convolutions on a 3-channel 320⇥240 image using 200 filters and a batch size of 1,
(k) 2⇥2 max pooling on the same image size using stride 2⇥2, no padding and a batch
size of 1, (l) 3⇥7⇥3 3D max pooling for non-maximum suppression on the same image
size using stride 1⇥1⇥1, no padding and batch size 1.
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while the accuracy did not change. Using float16 precision instead of float32
precision reduced the remaining run-time by approximately 25%.

To further speed up the computation, we introduced a ground plane con-
straint. By assuming that all persons must stand on the ground and by utilizing
the extrinsic camera parameters, the image pyramid can be significantly reduced
[17]. Since the relative position of the camera to the robot does not change over
time, we can set all image sizes and succeeding tensor sizes beforehand. Again,
when done properly, the accuracy does not decrease. Using this ground plane
assumption, the remaining run-time was reduced by approximately 75%.

4 Experiments

4.1 Benchmarking Deep Learning on the Jetson TX1

To figure out, which DL operations mainly caused the significant slowdown on
the Jetson TX1 in comparison to the high performance Titan X GPU, we first
analyzed their run-time (Fig. 4).

Most critical are convolutions and rarely used and thus less optimized oper-
ations such as 3D pooling. Convolutions are significantly slower on the Jetson
platform with a slowdown factor of up to 11. In our network, as in most other
modern CNNs too, more than 90% of the computations are convolutions. This
explains most of the observed slowdown. Fig. 4 also shows, that for large ma-
trix and tensor sizes in common neural networks, all operations using float16
precision are faster than equivalent float32 precision operations.

4.2 Gained speedup

Tab. 1 shows the run-time for di↵erent stages of optimization. By optimizing the
detector for processing on the Jetson TX1, we were able to speed up the run-time
by a factor of 15 considering both preprocessing and DNN output computation
(619.7ms vs. 9,321.3ms). At the same time, the accuracy did not decrease.

Table 1. Runtime of optimized detector on Jetson TX1

Detector FloatX Inp. scaling [ms] Detection [ms]
Reference [6] float32 930.1± 2.8 8,391.2± 15.3
Optimizations
No overhead & float16 float16 46.1± 3.2 2,103.2± 5.9
+ Ground plane float16 32.1± 0.3 587.6± 1.8

The steps described in Sec. 3.3 to reduce the run-time on an embedded
platform are not specific for this detector, but can be applied to other Deep
Learning approaches, too. Thus, we recommend to always check if the run-time
can be reduced by:
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– processing as much operations as possible on the GPU instead of the CPU
to avoid overhead of copy operations,

– removing redundancies from the computation graph,
– specifying exact shapes to make all tensor sizes static,
– using float16 instead of float32 precision if accuracy does not drop,
– using assumptions to avoid needless computations.

4.3 Benchmarking the Person Detector on a Mobile Robot

We evaluated the person detector ported to this low power consuming small
board on our mobile robot. Therefore, the Jetson TX1 was coupled to the
main computer using its network interface, while data were exchanged using
the robotics middleware MIRA [5]. In sum, data conversion, synchronization
and communication for data transfer took only 3.36ms per frame.

Tab. 2 shows the detection results on a recorded dataset [39].

Table 2. Detection performance of Computer Vision (CV) and Deep Learning (DL)
approaches in a robotic application measured by miss rate (MR) for di↵erent false
positives per image (FPPI). Additionally, the average number of frames that could be
processed per second on a Jetson TX1 is reported.

Approach Type MR@0.1 FPPI MR@0.01 FPPI Frame rate

YOLO [27] DL 0.386 0.918 12 [42]
Faster R-CNN [28] DL 0.321 0.734 2–3 [22]
Part-based HOG [9] CV 0.273 0.603 1.5–2
Proposed [6] DL 0.115 0.287 1.6

The proposed multi-scale detector based on [6] clearly outperforms the other
approaches in accuracy. The other Deep Learning detectors (YOLO, Faster R-
CNN) perform relatively poor in comparison. Their performance is in the prox-
imity of the best classical approaches. This was also observed by Zhang et al. [41]
on the Caltech dataset. In their extensive analysis, they found, that a Region
Proposal Network ”specially tailored for pedestrian detection achieves competi-
tive results as a stand-alone pedestrian detector. But surprisingly, the accuracy
is degraded after feeding these proposals into the Fast R-CNN classifier.” One
reason is, that small objects are not detected appropriately. We observed the
same in our experiments. The second reason is the presence of unseen hard neg-
ative examples that trick most detectors to false detections. This issue can only
be solved by training on a dataset including these di�culties, as we did in our
previous work for the baseline CNN [6].

If a higher processing speed is desired, the detection can be divided and
distributed onto multiple Jetson TX1. Four of these devices would still require
less power than a single PC with a powerful CPU and would also require less
space.
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5 Conclusion

The small and low power consuming NVIDIA Jetson TX1 platform with a pow-
erful GPU onboard makes it possible to apply top performing Deep Learning
approaches on an autonomous car or a mobile robot. Thus, all DL solutions can
be processed onboard. Exemplary, we showed how to port a DL-based person de-
tector to this platform. Furthermore, we showed how to speed up the detector’s
run-time by factor 15. The result is a top performing DL-based person detector
fast enough to replace the currently used CPU-based classical computer-vision-
based detector on our robot. Our benchmark of typical DL operations will help
other researches to estimate the run-time of Deep Learning approaches when
applied on a Jetson TX1. Additionally, we have presented a list of generally ap-
plicable optimizations to speedup the computation on that device. In the quali-
tative evaluation on a robotic person detection benchmark dataset, the proposed
detector clearly outperforms the state of the art including the popular DL-based
object detectors YOLO and Faster R-CNN.
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Abstract. In the paper we present architecture and functions of the software 
framework for morphological neural network computations. This type of 
networks shows very usable features especially if real-time training and response 
are required. In the paper the basic information on the C++ software for 
morphological neural networks is presented, whereas the whole software 
framework has been made accessible from the Internet. 
Keywords: Morphological neural-network, computer vision, real-time 
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1  Introduction 

Neural computations for artificial intelligence belong to the fastest growing areas of 
research, as well as industrial and social applications [1][3][4][5]. A real breakthrough 
was development of deep neural architectures which outperform other classifiers in 
terms of accuracy [8][1]. However, despite their excellent accuracy they show many 
drawbacks from which the most severe is very high computational demands [9]. On the 
other hand, there are many artificial intelligence applications which are aimed to 
operate on embedded or robot platforms. In such cases, the morphological neural 
networks exhibit many benefits, especially in terms of learning and run-time 
performance. Also interesting is to consider other types of deep architectures – for 
example, deep architectures with the morphological neural networks. For this purpose 
we developed a software framework for easy processing of the morphological neural 
networks (MNN). In this paper we present and discuss the basic properties of this 
framework, as well as present its main benefits.  

2 Introduction to the Morphological Neural Architectures  

The most outstanding characteristic feature of the morphological neural networks is 
utilization of exclusively summation and min and max operators in the basic form of 
the morphological neuron. When compared with the perceptron, in which there are 
multiplications, summations, as well as nonlinear functions, the former offer much 
faster computations. As shown by Ritter, these operations – based on the lattice theory 



– are sufficient to define neural networks that offer many interesting properties [13]. 
Although, MNN now are in somehow recession due to enthusiasm associated with deep 
architectures, as already mentioned, these can be considered as building blocks of deep 
architectures as well. This subject belongs to one of our research directions. 

After their proposition by Ritter, MNN found interest among other researchers 
showing some useful properties. They were shown to operate well in associative and  
auto-associative memories [11], for image denoising [12], as well as useful and very 
fast classifiers [10][14][15]. For example Villaverde et al. propose MNN in the problem 
of simultaneous localization and mapping (SLAM), which is a key task in robotics [16]. 
They compute the indoor non-metric SLAM problem with help of the visual 
information obtained from the morphologically independent images. It appears that 
these correspond to the vertices of the convex hull encompassing data points in a high 
dimensional space. MNN were also applied by Cyganek to the classification of binary 
pictograms for the road signs recognition [6]. 

Fig. 1 shows a model of a morphological neuron – as in majority of the neural 
networks, there is a number of L input signals and one output. However, the main 
difference lies in the performed operations. That is, the input signals are summed 
together with the weights, and the maximum value of this is then computed.  
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Fig. 1. View of a morphological neuron. 

More specifically, the morphological neuron operates in accordance with the 
following expression  

� �
1

L

k k ik i iki
y p r x wq

 

§ · �¨ ¸
© ¹

� , (1) 

where rik denote a pre-synaptic response which transfers excitatory (rik=+1), or 
inhibitory (rik=-1), incitation of an i-th neuron, pk is the post-synaptic response of a k-
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th neuron to the total input signal, whereas the symbol � denotes a max product, then 
q  stands for a saturation function. However, the above equation is then further 
simplified. For example, values of rik and pk are positive.  

Let us take a closer look at the most important operations of the MNN. The max 
product � for two matrices Apq and Bqr is a matrix Cpr, with elements cij is defined as  

� �
1

q

ij ik kjk
c a b

 
 �� . (2) 

Analogously, the min operator � is defined as follows 

� �
1 

 ��
q

ij ik kj
k

c a b . (3) 

Thus, comparing the well-known model of perceptron with the morphological 
neuron we easily notice the exchange of multiplication of inputs xi with the synaptic 
weights into their summation, as well as summation of these products into their max 
value. 

Fig. 2 shows the MNN proposed in [6] for classification of binary pictograms. This 
is a type of a morphological associative memory in which a set of i input/output pairs 
is given in the form: (x1,y1), …, (xN,yN). The pattern x, of dimensions 256x256, is a 
linear version of an image of a sign, in this casae, and y is binary version of a pattern’s 
class. All the inputs are gathered in the input layer X.  
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Fig. 2. Exemplary architecture of an associative morphological neural network for visual patterns 
recognition. 
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On the other hand, vectors y decode classes of the pictograms in the one-of-N code. 
Then, from the pairs (xi,yi), the matrices X=(x1,…, xN) and Y=(y1,…, yN) are 
constructed. In the case of one layer, a matrix W or M of weights is determined from 
X and Y as follows [13][6][3] 

� �� �1

N T
i ii 

 u ��XYW y x , (4) 

 and 

� �� �1

N T
i ii 

 u ��XYM y x . (5) 

In the above equations, T denotes transposition of a vector, the symbol u denotes the so 
called morphological outer product of vectors, which is defined as follows [13][14] 

1 1 1

1

n
T

m m n

y x y x

y x y x

� �ª º
« »u  « »
« »� �¬ ¼

y x . (6) 

It is interesting to observe that the above is analogous to the outer product of vectors, 
in which addition is substituted for multiplication, however. Now, for any real number 
a its additive conjugate is given as follows 

*a a � . (7) 

Thus, let us also observe that for all a,b��, the following holds 

� �** *a b a b�  � . (8) 

With W and M defined in (4)-(5) the following hold 

i i�  XYW x y , (9) 

i i�  XYM x y , (10) 

which constitute the basic operation of associative neural memories. As was shown, the 
above hold even for erosively or dilatively distorted versions ix of ix . That is, a perfect 
recall is guaranteed if there are some pixels in a prototype image x which values are 
greater for W (or lower for M) in this image from the maximum of all the remaining 
patterns xi stored in the network. For binary images this means a unique pixel with 
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value ‘1’ in each of the prototypes xi. This feature, in turn, is connected with the concept 
of the morphological independence, as well as the strong independence [11-13].  

Further, to make MNN robust to random, i.e. dilative and erosive noise, a kernel 
version of MNN was proposed by Ritter [11]. The idea is to replace the associative 
memory W or M with a series of two memories M’ and W’ which are connected by 
the intermediate pattern Z, which is called a kernel. Such a computation scheme is also 
assumed in the network shown in Fig. 2. It operates as follows: input-M’ZZ-W’ZY-
output. This pattern of operation can be written as follows 

� �
i

T T
i i� �  ZY ZZ

z

W M x y . 
(11) 

In the above, ix  denotes a randomly corrupted input pattern. The matrices MT
ZZ and 

WT
ZY in (11) are found in accordance with the previously described mechanisms, 

however for different matrices and after finding a kernel Z. Construction of the kernel 
Z is outlined by the theorems provided in the papers [11][14]. 

3 Software Framework for Morphological Neural Computations 

Fig. 3 depicts class hierarchy of our software component. Shown classes 
TMorphoOperationsFor and TMorphoNet, which implement basic operations of lattice 
algebra and the morphological associative network, respectively. Visible is also the 
MorphMatrix class which is a special version of the common TImageFor class. All 
these were written into the more general DeRecLib, accessible from the Internet [10].  

The methods were implemented in C++. The experiments were run on a laptop 
computer equipped with the Intel® Xeon® E-1545 CPU @2.9GHz, 64GB RAM, and 
OS 64-bit Windows 10.  

Majority of operations of the TMorphoOperationsFor class are used in 
implementation of the MNN, implemented by the TMorphoNeuralNet class. These 
follow operations expressed in equations (9)-(11). For this purpose the object of the  
TMorphoNeuralNet class stores the matrices W, M, and the Z respectively, as shown 
in Fig. 3. 
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MorphMatrix
(TImageFor)

# fData : pixel type = val

+ GetPixel( matrix_index ) : PixelType

TMorphoOperationsFor
# fTensorMode : int

TMorphoNeuralNet

+ SetPixel( matrix_index ) : PixelType

+ Orphan_Max( const MorphMatrix & a, 
const MorphMatrix & b ) const : MorphMatrix * 

# fIndexVector: vector

PixelType

ElType

ElType

+ Orphan_Conjugate( const MorphMatrix & a )
: MorphMatrix * 

Class for 
morphological 

operations

+ Orphan_Min( const MorphMatrix & a, 
const MorphMatrix & b ) const : MorphMatrix * 

+ Orphan_Max_Product( const MorphMatrix & a, 
const MorphMatrix & b ) const : MorphMatrix * 

+ Orphan_Min_Product( const MorphMatrix & a, 
const MorphMatrix & b ) const : MorphMatrix * 

+ Orphan_Cross_Product( 
const MorphMatrix & a, 
const MorphMatrix & b ) const : MorphMatrix * 

+ Min_Update_Cross_Product( 
          MorphMatrix & c, 
const MorphMatrix & a, 
const MorphMatrix & b ) const : bool 

+ Max_Update_Cross_Product( 
          MorphMatrix & c, 
const MorphMatrix & a, 
const MorphMatrix & b ) const : bool 

+ AddPatternsPair( 
const MonochromeImage & x, 
const MonochromeImage & y ) : bool

+ RecallPattern( 
const MonochromeImage & x, 
int y_cols, int y_rows ) : MonochromeImage * 

# fMatrix_W : TRealImage *

# fMatrix_M : TRealImage *

# fMatrix_Z : TRealImage *

 

Fig. 3. Class hierarchy of the TMorphoOperationsFor and TMorphoNet classes which 
implement basic operations of lattice algebra and the morphological associative network, 
respectively. 

The principal members of the TMorphoOperationsFor class are the 
AddPatternsPair and RecallPattern functions. The former is responsible for network 
training and enters a new associative pair of patterns x and y into the network. The 
latter, retrieves an associated pattern to the shown one. The auxiliary parameters for the 
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RecallPattern function are dimensions of the image which will be reconstructed from 
its vector-like version. 

Algorithm 1 shows test code for morphological neural network. These simple tests 
were performed to check basic properties of the MNN. In this case, for training we used 
test images shown in Fig. 4. 
 
void MorphoTest( void ) 
{ 
 TMorphoNeuralNet MNN; 
 
  
 int num_of_patterns = 3; 
 
 
 TIFF_Converters TIFF_Wizard; 
 MonochromeImage * image_x_1 =         
  TIFF_Wizard.OrphanMonochromeImageFrom_TIFF_File 
  ( _T("Lenna_part_1.tiff") ); 
 
 MonochromeImage * image_x_2 =      
  TIFF_Wizard.OrphanMonochromeImageFrom_TIFF_File 
  ( _T("Lenna_part_2.tiff") ); 
 
 MonochromeImage * image_x_3 =      
  TIFF_Wizard.OrphanMonochromeImageFrom_TIFF_File 
  ( _T("Lenna_part_3.tiff") ); 
 
 CreateNewViewWindowAndSetImage( * image_x_1, _T("Input pattern 1") ); 
 CreateNewViewWindowAndSetImage( * image_x_2, _T("Input pattern 2") ); 
 CreateNewViewWindowAndSetImage( * image_x_3, _T("Input pattern 3") ); 
 
 int x_cols = image_x_1->GetCol(); 
 int x_rows = image_x_1->GetRow(); 
 
 // This memory works fine for autoassociative memories 
 MonochromeImage image_y_1( * image_x_1 ); 
 MonochromeImage image_y_2( * image_x_2 ); 
 MonochromeImage image_y_3( * image_x_3 ); 
 
 
 bool add_ret_val = false; 
 
 add_ret_val = MNN.AddPatternsPair( * image_x_1, image_y_1 ); 
 add_ret_val = MNN.AddPatternsPair( * image_x_2, image_y_2 ); 
 add_ret_val = MNN.AddPatternsPair( * image_x_3, image_y_3 ); 
 
  
 // Ok, let's see what we recall... 
 
 MonochromeImage * y_recalled; 
  
  
 ////////////////////////////////////////////////////////////  
 // Here we warp an image and test network response 
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 AffinelyWarp( * image_x_1, -2, 0.0, 0.0, 1.0, 1.0 ); 
 CreateNewViewWindowAndSetImage( * image_x_1, _T("Warped pattern 1") ); 
 
 
 y_recalled = MNN.RecallPattern( * image_x_1, x_cols, x_rows ); 
 
 if( y_recalled != 0 ) 
    CreateNewViewWindowAndSetImage( * y_recalled, _T("1 of MNN") ); 
 
 delete y_recalled; 
 
 
 
 //////////////////////////////////////////////////////////// 
 AffinelyWarp( * image_x_2, 2, 0.0, 0.0, 1.0, 1.0 ); 
 CreateNewViewWindowAndSetImage( * image_x_2, _T("Warped pattern 2") ); 
 
 y_recalled = MNN.RecallPattern( * image_x_2, x_cols, x_rows ); 
 
 if( y_recalled != 0 ) 
    CreateNewViewWindowAndSetImage( * y_recalled, _T("2 of MNN") ); 
 
 delete y_recalled; 
 
 
 //////////////////////////////////////////////////////////// 
 AffinelyWarp( * image_x_3, 5, 0.0, 0.0, 1.0, 1.0 ); 
 CreateNewViewWindowAndSetImage( * image_x_3, _T("Warped pattern 3") ); 
 
 y_recalled = MNN.RecallPattern( * image_x_3, x_cols, x_rows ); 
 
 if( y_recalled != 0 ) 
    CreateNewViewWindowAndSetImage( * y_recalled, _T("3 of MNN") ); 
 
 delete y_recalled; 
 //////////////////////////////////////////////////////////// 
 
 delete image_x_1; 
 delete image_x_2; 
 delete image_x_3; 
 
} 
 

Algorithm 1. Test code for morphological neural network.  

 
Fig. 4 shows images used in tests of the associative morphological neural network 

in our software framework. These are parts of the famous Lena image, frequently used 
for testing of different image processing procedures. On the other hand, testing was 
done with affinely deformed versions of the input images. The network always 
responded with a proper class. 
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Fig. 4. Test images used in tests of the associative morphological neural network in our software 
framework. 

 
Both, training and response of the network are very fast and allow real-time 

operation even with image patterns in HD resolution. In our implementation, these were 
in order of few milliseconds. Hence, in many practical cases the morphological neural 
networks can pose a real substitute for more demanding neural algorithms when run on 
embedded or robotic platforms. For instance, MNN can be considered in embedded AI 
systems. Also, its operations can further benefit from parallel implementations [19]. 

4 Conclusions 

In the paper, the software framework for real-time training and run-time of the 
morphological neural networks is presented. We show that despite a tremendous impact 
of deep neural architectures they still show a number of drawbacks, from which the 
computational requirements can be prohibitive for small factor embedded or robotic 
platforms. As an alternative, the morphological neural networks can be used. In this 
paper we present an object-oriented software platform to operate this type of networks. 
The software is also available from the Internet [7]. 
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Abstract. The study evaluates possibility of use of real-time background 
detection based on the PCA with fast eigen-decomposition method [1] when used 
in thermal imagery. It shows how algorithms designed for classic vision systems 
perform when applied to long-infrared range of the electromagnetic spectrum. 

Keywords: thermal imaging, computer vision, background subtraction. 

1 Introduction 

Thermal imaging in recent years gains popularity, both in industrial solutions and re-
search projects. Thanks to technological developments low-cost thermal imaging tem-
perature sensors starts to become available for scientists and automation engineers [4].  

Using long-infrared thermal imaging devices over classic cameras allows to produce 
usable image even in total darkness and/or extreme lightning conditions. This allows to 
simplify further processing, because input data stays relatively coherent over wide 
range of situations. 

In this paper we try to evaluate if algorithm designed for background subtraction 
(BS) in visual light images can be applied to thermal images without major 
modifications. For this purpose real-time background detection algorithm based on the 
PCA with fast eigen-decomposition method proposed by Cyganek and Woźniak [1]. 

2 Related work 

Earlier works in this area [2] exploited image characteristics of thermal halos that are 
visible on images produced by ferroelectric BST sensors to find regions-of-interests 
(ROIs) and amplify salient gradient information. Approach used in this paper allows 
usage of uncooled microbolometer thermal sensors, which do not produce the haloing 
effect [6]. 



3 Test equipment and methodology 

For the purpose of this study five thermal video sequences were recorded, both indoor 
(3 sequences) and outdoor (2 sequences). 

Recording was carried out using a FLIR A35 thermal imaging camera [5]. This de-
vice streams 320 x 256 thermal images at up to 60 frames per second over Gigabit 
Ethernet connection. It allows to measure object temperature ranging from -25 to +135 
degrees Celsius, with accuracy of 5% of reading. Custom written software was used to 
automate initial camera configuration and to allow saving 14-bit raw images to 16-bit 
TIFF files. 

From every sequence 100 frames is used as a training data for the BS algorithm. 
Then 1 frame was chosen as a test frame for algorithm, to compute it’s background. 
Images are processed with real-time background detection algorithm based on the PCA 
with fast eigen-decomposition method and then compared with manually labeled 
ground-truth image for that frame to provide quantitative comparison. 

4 Experimental results 

The code for background subtraction method is the same as used in [1], only minor 
changes were made to allow usage of 14-bit raw images. The experiments were run on 
a laptop computer equipped with the Intel® Core i7® 6700HQ CPU @2.6GHz, 16GB 
RAM, and OS 64-bit Windows 10. 

The results for the Hands, Notebook, Office, Car and BirdInTheSky are shown in 
Figure 1, Figure 2, Figure 3, Figure 4 and Figure 5 respectively. Quantitative result is 
the F number, which is computed based on true-positive (TP), true-negative(TN), false-
positive (FP) and false-negative (FN) using procedures described in [3]. 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

TP TN FP FN F 
2891 78785 161 83 0.960 

Fig. 1. Results obtained from Hands test sequence. Examples from the training data (a)-(c). 
Eigenimages corresponding to the largest eigenvalues (d). Test frame (e), background ground-
truth for the test frame (f), obtained background (g). Below there are results True-Positive/True-
Negative/False-Positive/False-Negative  and the F score.  
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TP TN FP FN F 
625 81213 69 13 0.938 

Fig. 2. Results obtained from Notebook test sequence. 
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TP TN FP FN F 

6461 74666 28 765 0.942 
Fig. 3. Results obtained from Office test sequence. 

Tests performed indoor shows that separation of elements significantly warmer than 
surrounding background, like people or electronic devices is performed very well, with-
out exhibiting too much irregularities. Additionally, as shows test sequence named 
Hands, background subtraction is undisturbed by introducing background model with 
moving object. 
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TP TN FP FN F 
76 81790 5 49 0.738 

Fig. 4. Results obtained from Car test sequence. 

It can be seen that outdoor sequences are performing worse than shown earlier, in-
door images. This is caused by wrong lens position during recording, therefore images 
are slightly out of focus. Nevertheless, resulting background removal is still very good. 
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TP TN FP FN F 
23 81879 18 0 0.719 

Fig. 5. Results obtained from BirdOnTheSky test sequence. 

5 Conclusions 

The ability to effectively detect and remove background in thermal video is crucial for 
applications like surveillance, autonomous vehicles or industrial inspection. Being able 
to employ the same methods for both images captured in visible and long-infrared light 
spectrum can greatly simplify processing applications, especially for embedded sys-
tems. Moreover, thermal images can be easily preprocessed to eliminate areas with too 
high or too low temperature to additionally improve background removal process. 

 As this study shows, methods based on PCA subspace decomposition can be suc-
cessfully applied to IR images and perform as well as other methods designed specifi-
cally for thermal imaging. Algorithm also benefits from higher dynamic range provided 
by 14-bit signal, instead of usual 8-bit for classic video systems.  Further investigation 
of this subject could include comparison with more BS methods. 
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